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In this paper a method is introduced based on the concept

of Bayesian Networks (BNs), which is applied to model sensor

fusion. Sensors can be characterised as real time variant systems

with specific physical functional principles, allowing to determine

the value of a physical state of interest within certain ranges

of tolerance. The measurements of the sensors are affected by

external, e.g. environmental conditions, and internal conditions, e.g.

the physical life of the sensor and its components. These effects can

cause selection bias, which yields corrupted data. For this reason,

the underlying process, the measurements, the external and internal

conditions are considered in the BN model for data fusion. The

effectiveness of the approach is underlined on the basis of vehicle

classification in traffic surveillance. The results of our simulations

show, that the accuracy of the estimates of the vehicle classes is

increased by more than 60%.

Manuscript received October 5, 2007; revised August 24, 2008; re-
leased for publication November 1, 2008.

Refereeing of this contribution was handled by Professor David Hall.

Authors’ addresses: Institut für Verkehrstelematik, Fakultät für Verk-
ehrswissenschaften “Friedrich List,” Technische Universität Dresden,
01062 Dresden, Germany, Email: (marek.junghans@tu-dresden.de,
hans-joachim.jentschel@tu-dresden.de).

1557-6418/08/$17.00 c° 2008 JAIF

1. INTRODUCTION

Bayesian Data Fusion (BDF) is a well-established
method in decision-level fusion to increase the quality
of measured data of several equal or different sensors,
e.g. [7], [13]. Although the method is powerful, the re-
sults of the fusion process are only (1) as good as the
sensors are; (2) as good as the a priori knowledge about
the sensors is and (3) as good as the a priori knowl-
edge about the underlying process is. For instance, in
case of vehicle classification for traffic surveillance by
several more or less accurate sensors (item 1), accurate
relative frequencies of correct and wrong classifications
(phantom detections, incorrect classified vehicles) are
required to achieve beneficial fusion results (item 2).
This statement is supplemented by an adequate charac-
terisation and quantification of the underlying unknown
traffic process (item 3).
For an adequate traffic management, there is a par-

ticular need for highly accurate traffic data, measured
by accurate and reliable sensors, yielding a high de-
gree of acceptance and credibility concerning the signif-
icance of the measured traffic parameters. There are a
lot of different sensor technologies with different phys-
ical functional principles, different performance, prob-
lems and thus, differing operational areas [18], [19].
Two currently important coexisting sensor technolo-
gies are for instance the inductive loop detectors and
video sensors. Loop detectors measure the traffic pro-
cess temporally, while video sensors enable temporal
and wide area measurements, yielding more compre-
hensive data about the underlying traffic process than
loop detectors. Both sensors provide a data quality
in accordance with their physical functional principle
and in accordance with the influences of the affect-
ing surrounding environment. For instance, an induc-
tive loop detector works properly under fluid traffic
conditions, whereas the measurements are not accu-
rate, if there is stop-and-go traffic. Furthermore, ve-
hicle detection and classification may be problematic
in case of overtaking procedures, when the loops are
overrun only partly, [11], [12]. That means an induc-
tive loop detector is a sensor, which is influenced by
the traffic process itself. In contrast to loop detectors,
it is a well-known fact, that the most currently em-
ployed video sensors usually work poorly under bad
weather conditions (e.g. heavy rain, fog, etc.), chang-
ing illuminations (e.g. reflections on the road surface)
and traffic process dependent problems (e.g. occlusions
among the vehicles on the road). Although new meth-
ods have recently been developed to overcome the ad-
dressed problems [11], the detection errors of currently
used video sensors increase to more than 1000%, if
the weather and illumination conditions are bad [6].
In contrast, they perform much better (they can reach
even the same accuracy as an inductive loop detec-
tor), if the conditions for an optimal operation are
maintained.
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Not only weather and illumination conditions affect
the accuracy of the measurements, but also other envi-
ronmental conditions (e.g. temperature, luminosity, hy-
grometry, etc.) and systematic causes (e.g. the instal-
lation of the sensor for overhead or sidefire detection)
may distort the detection. Without consideration of par-
ticular sensor properties and dependencies and the influ-
ences of the environmental conditions on the sensor, the
data are manipulated by selection bias. Consequently,
physically and environmentally affected sensors must be
considered in the (probabilistic) fusion model to correct
selection bias and to decrease the frequency of faulty
sensor data.
In this paper, the concept of BNs is applied to merge

biased traffic sensor data, which are affected by the
surrounding environment. The conditions affecting the
sensors are modelled in the BN data fusion model. It
will be shown that the correction of selection bias can
improve the accuracy of data fusion by more than 60%.
The paper is structured as follows: In section 2

some background on BNs is given. Subsequently, in
section 3, the naive (classical) concept of BDF is in-
troduced and then, extended to Bayesian Network Data
Fusion (BNDF) considering additional nodes contain-
ing additional information, which are important for the
fusion process. In section 4, a BNDF model is devel-
oped for the qualification of traffic data. Thereby, some
environmental conditions (e.g. weather conditions, re-
flections on the road surface) and some traffic process
related conditions (e.g. occlusions among the vehicles,
the dependency on the traffic state) are modelled as ad-
ditional nodes in the considered network. Then, in sec-
tion 5, simulation results are presented. Finally, in sec-
tion 6, conclusions and and future prospects are given.

2. BAYESIAN NETWORKS (BNS)

A Bayesian Network (BN) is a graphical formalism
of handling and processing uncertain and incomplete
knowledge in causal reasoning. BNs consist of a set of
discrete random variables or nodes and a set of directed
links or arrows. Each node is described by a set of mu-
tually exclusive states. Some of the nodes are connected
with other nodes by arrows. The arrows characterise the
conditional dependencies among the nodes. So for in-
stance, in the BN shown in Fig. 1, there is an arrow from
node X to node Z1, this indicates X causes Z1. In this
case, X is called a parent node, because it is the cause
and Z1 is the child node, because it describes the effect.
The cause-and-effect relationships are modelled by the
quantification of conditional probability tables (CPTs)
to each single node. The nodes together with the arrows
form the directed acyclic graph (DAG) [5].
Neapolitan [22] gives an adequate mathematical def-

inition of BNs: (1) Let P = P(x) be the joint proba-
bility distribution (JPD) of the space of all possible
state values x of the random variables in some set
X= fX1, : : : ,Xng, which are connected by a set of arrows

Fig. 1. A simple BN, which consists of three nodes. The variables
Z1 and Z2 are effects of the common cause X. The (conditional)

probabilities are given.

A= f(Xi,Xj) j Xi,Xj ½X, i 6= jg and the arrows pointing
from Xi to Xj . (2) Let G = (X,A) be a DAG. Then, (3)
(G,P) is a BN, if (G,P) satisfies the Markov condition,
i.e. a variable is conditionally independent of its non-
descendents given its parents. Thus, the JPD P(x) is
characterised by

P(x) =
Y
xi2x
P(xi j pa(Xi)) (1)

with pa(Xi) denoting the set of the parents states of
node Xi. If node Xi has no parent nodes, then pa(Xi)
= Ø. If Xi is a node with mi = jXij states, i.e. Xi =
fxi,1, : : : ,xi,mig, P(Xi = xi,k) denotes the probability of the
certain state xi,k. The conditional probability P(xi j xj)
denotes the conditional probability table of all condi-
tional probabilities P(xi,k j xj,l), with k = 1, : : : ,mk and
l = 1, : : : ,ml.
The simple BN shown in Fig. 1 consists of three

nodes, the parent node X and its child nodes Z1 and
Z2. The states of each node are characterised by small
letters x, z1 and z2 respectively. The causal relationships
are given by directed links and the JPD of this BN
is computed by equation (1), which can be rewritten
as:

P(x,z1,z2) = P(x)P(z1 j x)P(z2 j x): (2)

The BN in Fig. 1, which is characterised by the JPD in
equation (2), satisfies the Markov condition.
For further reading in general theory on BN the

reader is referred to [4], [22], [23].

3. BAYESIAN NETWORK DATA FUSION (BNDF)

In the following section 3.1, the naive or classical
Bayesian approach for data fusion is introduced and
then, in 3.2, extended to the more generalised Bayesian
Network Data Fusion (BNDF).

3.1. Naive Bayesian Data Fusion (BDF)

Bayesian Data Fusion (BDF) makes use of Bayes’
rule and combines objective and/or subjective knowl-
edge of the underlying and possibly unknown process–
its a priori probabilities and likelihoods–in a proba-
bilistic model. The method can principally be charac-
terised as:

P(x j z) = ® ¢P(x)P(z j x) (3)
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to infer x 2 X, which is the unknown state among jXj
possible states by the observation z 2 Z among jZj pos-
sible observations, which are also called evidences. All
the Ps are discrete probability distributions, but can be
considered in the continuous world as well. P(z j x) is
the conditional probability distribution (likelihood func-
tion) of a sensor measurement z given the true state x.
It reflects the correct and false measurements, which
can be characterised as the quantification of the ac-
curacy of the sensor. P(x) is the prior distribution of
x describing our expectation of the unknown variable
X. P(x j z) is the inference distribution (a posteriori
distribution) of the unknown state x given a specific
measurement z. It can be characterised as the trust
in a specific measurement P(z j x) expecting the prior
P(x). ® is a normalising constant, which ensures, thatP
i P(xi j z) = 1.
When the a priori probabilities and likelihoods are

determined, the given measurements z allow to infer
the unknown state x according to equation (3). That
means knowledge, which is based on evidences from
the observable variable Z is propagated towards the
unknown variable X. For more information on BDF
see [7], [13], [15], [25].
The BN in Fig. 1 is the simplest BN, which mod-

els naive BDF according to equation (3). The shown
BN consists of the variable X, which represents the un-
known process of interest and the two sensor variables
(evidence nodes) Z1 and Z2. However, the advantage of
BNDF is to extend the naive Bayesian model by a more
detailed or more characteristic modelling of the sensor
nodes and/or the underlying process. This problem is
addressed in the following section.

3.2. From BDF to BNDF

Remind the BN in Fig. 1 for naive BDF. Imagine
the two sensor variables Z1 and Z2 model an induc-
tive loop detector and a video based sensor respec-
tively, measuring the vehicle classes on a road of in-
terest. Then, the variable X represents the underlying
and unknown traffic process. Now, imagine, that some
properties of the detectors are influenced by their sur-
rounding environment, which might yield selection bias
in the measurements, resulting in faulty or corrupted
data usually being undesirable for an adequate traf-
fic management. But, if we know more about the un-
derlying process, the applied sensors and their prop-
erties and their surrounding environment, we can in-
clude this knowledge in a BN, which contains addi-
tional nodes, modelling these influences. Consequently,
the advantage of BNDF is to extend the naive BDF
model by a more detailed, more characteristic and
more realistic modelling of the sensor nodes and/or
the underlying process. This results in a data fusion
model, which is capable of correcting selection bias.
As a consequence, the resulting merged data are more
accurate.

Fig. 2. An extended BN for data fusion according to Fig. 1 with an
arbitrary sensor node Zi and an environmental influence node Ej .
The causal dependence between the environment E and the

measurement Z is shown by the directed link connecting them.
Without loss of generality, the sensor and environment nodes can be
connected several times with the traffic node X, depending on how
many sensors are in use and how many environmental dependencies

affect the performance of the sensor.

The application of these particular BNs for traffic
surveillance is a novel solution for the correction of
selection bias in manipulated traffic data. Comparable,
but different investigations were done for landmine
detection, e.g. [5], and in case of the detection of
acoustic signals, e.g. [16].
In Fig. 1, the environmental dependencies affecting

the performance of the sensors are not yet considered.
A more realistic and thus, more complex BN for data
fusion considering environmental influences is shown
in Fig. 2. According to Fig. 2 and the text above,
equation (3) has to be modified to equation (4), which
enables an improved data fusion:

P(x j z,e) = ® ¢P(x)P(z j x,e) (4)

with x representing the unknown vehicle class, e de-
scribing the set of the environmental influences on the
performance of the sensor and z the affected measure-
ments of a set of sensors. The calculation of equation (4)
yields a correction of selection bias by the influence
of the sensors’ surrounding environment and hence, the
improvement of the estimates of the unknown state vari-
able X under these conditions.
In the following section, the influences of the af-

fecting environment on a video based traffic detector
are more specified. Later, a comparison between the
performance of a weather independent inductive loop
detector and a weather dependent video sensor is made.
The correction of selection bias and thus, the improve-
ment of the fusion process are shown on the basis of
synthetic traffic data.

4. BNDF TO CORRECT SELECTION BIAS IN TRAFFIC
DATA

In this section, the BN according to Fig. 2 and its
inherent fusion equation (4) are applied to merge traffic
data and to improve the accuracy of the fusion process.
In the following paragraphs the modelling of the prior
probability distribution, the likelihood probability of
the environmental affected sensor, the resulting BNDF
model and the inference of the unknown state values for
the traffic process are discussed.

52 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 3, NO. 1 JUNE 2008



Fig. 3. A BN modelling the time dependence of the traffic process
(node X). For each point in time Tk another BN characterises the
traffic process with different probability distributions P(x j Tk).

4.1. Modelling the Prior Probability

The prior P(x) represents the knowledge about the
underlying traffic process. If we do not know any-
thing about it, it is legitimate to model the prior as a
uniform probability distribution, weighting each state
value equally. But if we know more, the process can be
modelled considering different objective (physical) or
subjective (Bayesian) assumptions. So, for instance, the
prior can be modelled as a probability distribution con-
taining all the relative frequencies of the most expected
vehicle on a road

² depending on the ratio of actual vehicles counted in
the referred area, city, country, etc.,

² depending on the time of the day,
² depending on the type of the observed road (e.g. it
can be distinguished between play streets and transit
roads),

² depending on incidents, events and structural mea-
sures, stoppages, etc.,

² or even mixtures of some of the mentioned depen-
dencies.

An example for modelling the traffic process depend-
ing on the time of day is given in Fig. 3. The time de-
pendence can be modelled as additional control nodes
(which are not BN nodes) resulting in a different BN at
each point in time. These kinds of BNs are called Dy-
namic Bayesian Networks (DBNs), but shall not be con-
sidered throughout this paper. See [21], [26] for deeper
information.
The formalism of BNs, introduced in section 2,

allows one to model the prior probability distribution of
the traffic process and its dependencies with additional
nodes and attached known or learned probability tables
to manipulate the a posteriori probability by the given
assumptions and information in a useful way.
The necessary data for the quantification of the

probability tables can be learned, adapting the under-
lying traffic process. Adaptive learning methods, e.g.
for learning time variant prior probabilities and CPTs
are addressed in, e.g. [3], [10], [24].

Fig. 4. Reflections on the road surface usually make the
determination of relevant traffic data difficult.

4.2. Modelling the Influenced Sensors

As already stated in section 1, the performance of
a sensor is dependent on its functional principle, the
surrounding environment and other phenomena. Here,
a traffic state dependent sensor and an environmental
affected sensor are modelled.
1) Modelling the Environmental Influenced Sensor:

A video detector, as an example for an environmental
influenced sensor, can be characterised by the following
dependencies [2], [6], [14], [20]:

² Different or changing weather conditions (e.g. heavy
rain, fog, snow, etc.) mainly cause false, multiple and
phantom detections.

² Different or changing illuminations, e.g. darkness, at
nightfall, glare of the sun, sun rise and sundown,
shadows of moving or immobile objects, reflections
on the road, e.g. as shown in Fig. 4, etc., usually cause
false, multiple and phantom detections.

² Camera motion and camera vibrations can be caused
by heavy winds. Particularly in wide area traffic
surveillance erroneous detections occur.

² Particular traffic conditions can cause partial or even
total occlusions among the vehicles, yielding an un-
derdetection of some or even all vehicle classes.

² Video sensors are mounted for overhead, sidefire and
wide area detection. Depending on the installation
height partial and total occlusions occur, yielding an
underdetection of some vehicle classes.

² The physical environment, e.g. temperature, luminos-
ity, hygrometry, etc., can have a great influence on
the measurements, because the sensor is built within
a specific range of tolerance.

² The driver behaviour, e.g. overtaking and turning pro-
cedures, can lead to multiple or false detections, when
the vehicles pass through several fixed detection ar-
eas partly. Usually specific vehicle classes are over-
counted, some others are undercounted.
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² The wear and tear of the sensor and the compo-
nents during its operating life (Mean Time Between
Failure–MTBF) can cause corrupted data, lack of
data or even data terminations.

² A bad calibration of the camera, particularly of the
detection areas, cause wrong vehicle classifications,
because of multiple or underdetections and faulty
velocity and length measurements.

Some of the effects are time-dependent (e.g. shadows
of moving or standing objects, because of sun rise),
some occur by accident (rain, reflections on the road
surface) and some have systematic causes (calibration
of a camera for overhead or side fire detection).
2) Modelling the Traffic State Influenced Sensor:

An inductive loop detector, as an example for a traf-
fic state dependent sensor, is an LC-oscillator, which
is buried underneath the road surface. Its resonance fre-
quency changes, if there is an metallic object in working
area of the loop. These changes are evaluated and com-
pared with known pattern, thus, a vehicle classification
is possible. Besides environmental and other affecting
dependencies, an inductive loop detector can be charac-
terised by, e.g. [11]:

² Free flow conditions usually yield optimal detection
results, while stop-and-go traffic distorts the measure-
ments. Usually, there occur overdetections, misclassi-
fications of the vehicles, enduring occupancies, yield-
ing for instance false estimations of the traffic density.

² The driver behaviour in different traffic conditions,
e.g. if loop detectors are overrun only partly, can lead
to multiple or false detections and misclassifications
of the detected vehicles.

3) Comments on Modelling the Considered Sensors:
The most effects, which have an influence on the sen-
sors’ performance and the quality of the measured data,
are not methodical, but stochastical uncertain and can
be considered and quantified in the BNDF model. The
quantification of the influences of the most physical
conditions for an optimal sensor performance is possible
by studying the data sheets, for instance, delivered by
the original end manufacturer. In contrast, the quantifi-
cation of the performance of the sensor under different
environmental conditions is difficult, because extensive
field tests with highly accurate sensors or manual refer-
ences need to be realised. So for instance, by means of
a rain or weather sensor, the current weather situation
can be determined and relative frequencies of correct,
false and phantom vehicle classifications could be made
to decide whether the sensor is more or less influenced
by weather conditions. Then, the values for the likeli-
hood P(z j x,e) of the considered sensor can be used for
inference.

4.3. Inference and Sensor Data Fusion

The resulting BNDF model can be used to com-
pute the state values of the unknown traffic process X

Fig. 5. The probability wheel (from Heckerman [8]).

within the surrounding known (or even unknown) envi-
ronment (data e). The sensors provide measuring data
(evidences) z, allowing the vehicle class x to be inferred
from the BNDF model according to the Markov condi-
tion of the JPD in equation (1) and the extended Bayes’
rule in equation (4).
In general, the computation and evaluation of a

BN is NP-hard [22], [23]. Depending of the number
of nodes, the number of states of each node and the
algorithm used, the evaluation of a BN can be quick or
time-consuming. The consideration of these facts and
the requirements, defined by the user, e.g. concerning
the real-time applicability, the accuracy of the fusion
results, etc. determine the structure (e.g. the number
of nodes and states) and the computation methods of
the BN in question (e.g. exact or approximate inference
algorithms).
Computing equation (4) by the use of exact or ap-

proximate inference algorithms, the probability distri-
bution of the inferred state x 2 X is estimated. Typi-
cally, the unknown value x is determined by a maxi-
mum a posteriori estimation (MAP) of the a posteriori
probability

x̂= argmax
x
P(x j z,e) (5)

by maximising the confidence in the measurement. An-
other method to calculate x̂, which keeps the principle
of probability alive, is the so called probability wheel,
introduced in [8]. In this method, the probabilities of the
states of a variable are considered as regions of different
percent areas on a symmetric wheel (see Fig. 5). The
symmetry assumption implies, that any position where
the wheel can stop is equally likely. Consequently, the
probability of which state x̂ will be chosen, depends on
the percent area where the wheel will stop. Hence, in
comparison to MAP estimation the probability wheel
may stop at the percent area for even very unlikely
states, which is particularly advantageous in case of flat
probability density functions, that characterise a higher
degree of uncertainty. The application of the probability
wheel can be expressed by

x̂= argPW
x
P(x j z,e) (6)

where PW labels the probability wheel operator. There
are different methods and algorithms for realising exact
or approximate inference, which are not discussed in
this paper. Good descriptions can be found in [21]—[23].
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5. RESULTS

In this section simulation results for BNDF in com-
parison with the naive BDF in the case of vehicle classi-
fication are presented. Thereby, on the one hand, the in-
fluence of environmental conditions on the performance
of a video sensor and on the other hand, the influence
of the traffic conditions on the performance of an in-
ductive loop detector are investigated. In the case of
BNDF these influences, which affect the measurements
of the sensors, are considered as additional nodes in the
BN model. The inference of the resulting BNDF model
yields a correction of selection bias in the merged traffic
data. In contrast, naive BDF is not capable of correcting
bias, yielding manipulated data.
The investigations were made on the basis of a data

base (video based measurements) containing 65,000
measurements generated synthetically and additionally,
real 24-hour traffic data [27] containing approximately
120,000 measurements. The real traffic data were re-
corded with an ASIM TT 298 combination detector1

and an ordinary inductive loop detector at an intersec-
tion between a federal road and a less frequented city
road (Radeburger Strasse/Meinholdstrasse) in Dresden,
Germany, on 20 May 2005. This data base is charac-
terised by peak traffic in the morning and in the evening
and was used for learning the prior probability P(x).
The BNDF model, developed in the last two sections

and the given data base are used for learning and
validation of cases with sensor data. The real data set
is not used for validation. For simulations, the tools
Mathematica 4.0 and Netica 3.19 were used. The results
are compared with the naive approach of BDF without
correction of selection bias.

5.1. State Declaration and Assumptions

In the following, the states of the traffic process
node X and the sensors Z1 (loop detector) and Z2 (video
sensor) are represented by different nine vehicle classes,
which are given by the following set of symbols:

X = fC,C+,V,L,L+,D,B,M,Ng
representing C (car), C+ (car with a trailer), V (van),
L (lorry), L+ (lorry with a trailer), D (double train),
B (bus), M (motorcycle) and N (not classifiable). One
more virtual class Ø, representing the case nothing
detected, was used to decide, whether a sensor did
not detect anything, although a vehicle was present.
Thus,

Z1 = Z2 = fX,Øg:

1A final report about testing the ASIM TT 298 detector in accordance
with the German TLS standard [1], developed by Munich University
of Technology is available on http://www.asim.ch/traffic/pdf/report
tt298 d.pdf [17].

Fig. 6. Qualified data fusion with the two affected sensors Z1 and
Z2. In contrast to the classical BDF model according to Fig. 1 the
BN contains the environmental nodes W and R, modelling the
Weather conditions and the Reflections on the road surface; the

traffic process dependent nodes T and O, modelling the Traffic state
and Occlusions among the vehicles on the road; as well as the node

S, modelling the Sensor installation for sidefire or overhead
detection. The grey coloured nodes and the dashed directed link are
inconsequential, if the the nodes O, R and T are evidence nodes.

The quantification of the prior P(x) was made by EM-
(expectation maximisation) learning of the real 24-hour
data [27]. The vehicle class C was expectedly strongly
overrepresented by approximately 85%, while the other
eight classes share the remaining 15%. The relative
frequency of the most rare class N reached only 0.1%
(see equation (8) in the appendix).
We chose the simple BN in Fig. 6, which is the result

of the following assumptions and determinations made:
² The loop detector Z1 is affected only by the traffic
state T, which is characterised by the states t1 (free
flow) and t2 (stop-and-go traffic), i.e. T = ft1, t2g. It
works optimally in the case of T = t1. There should be
an explicit underdetection of the vehicle classes C+,
L+ and D in the case of T = t2 (see equation (10)
in the appendix). All other classes should be slightly
underdetected. The influence set for sensor Z1 thus is
E1 = T.

² In contrast, the video sensor Z2 should be affected
by reflections on the road surface R and current
occlusions among the vehicles O. Reflections on the
road surface should be caused by the current weather
conditions W. Occlusions should be caused by the
sensor installation S and the traffic state T. Since
we consider the nodes O and R as evidence nodes,
the influences of T, S and W on Z2 are “explained
away” [22], [23]. Thus, the influence set for the video
detector is given by E2 = fR,Og.

² The resulting influence set is given by E= fE1,E2g=
fT,R,Og.

² The nodes O and R are binary nodes, which are
characterised by the states o1 (there are not any
occlusions among the vehicles at all) and o2 (heavy
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occlusions) and r1 (there are not any reflections on
the road surface) and r2 (heavy reflections).

² The video sensor has the same performance as the
loop detector in the case of optimal conditions with
no bias. Thus, the likelihood probability of the video
sensor is given by P(z2 j x,o1,r1) = P(z1 j x, t1) yield-
ing optimal fusion results (see equations (9) and (11)
in the appendix). For this reason, the fusion process
needs only to be simulated in the case of the worst
conditions concerning the three nodes with the states
o2, r2 and t2, where the correction of selection bias is
to be proved.

² In the case of reflections on the road surface, because
of darkness and bad weather conditions and in the
case of occlusions among vehicles, it often happens,
that some vehicles are overcounted and some are un-
dercounted [2], [6], [14], [20]. Here it is assumed,
that larger vehicles, e.g. lorries and buses, are over-
counted, while smaller vehicles, like cars, motorcy-
cles and vans, are undercounted (see equations (13)
and (14) in the appendix). This causes changes in the
quantification of the likelihoods of the video sensor
and the loop detector and yields different joint likeli-
hoods P(z1,z2 j x, t,o,r).

² Phantom detections should not be present.

With the assumptions and determinations made we sim-
ulated the naive BDF approach in comparison with the
extended and qualified BNDF model, which considers
the traffic state node, the occlusions node and the re-
flections node.
In the following paragraph the results for two sensor

data fusion are presented.

5.2. BNDF vs. BDF

According to the learned a priori distribution P(x)
of the underlying traffic process and the modelled like-
lihoods of the the loop detector P(z1 j x, t) and the video
sensor P(z2 j x,o,r), which consider the made assump-
tions of the preceeding paragraph 5.1, we simulated the
fusion process with two sensors for the following cases
(see equations (9) to (14) for the applied sensor likeli-
hoods):

0. Both sensors work optimally, i.e. there are not any
internal and external influences, which affect the
measurements of the sensor. This case is only used
for reference.

1. The inductive loop detector works optimally, but the
video detector is affected
a) by occlusions, i.e. e= fo2g.
b) by reflections on the road surface, i.e. e= fr2g.
c) by occlusions and reflections on the road surface,
i.e. e= fo2,r2g.

2. The video sensor works optimally, but the inductive
loop detector is affected by the traffic state, i.e.
e= ft2g.

3. Both sensors are affected, i.e the loop detector is
influenced as in 2.) and the video sensor is influenced
as in 1.) by:
a) by occlusions, i.e. e= ft2,o2g.
b) by reflections on the road surface, i.e. e= ft2,r2g.
c) by occlusions and reflections on the road surface,
i.e. e= ft2,o2,r2g.

In case 3.c) the conditions for the detection and classi-
fication of vehicles are the worst, because both sensors
are affected by reflections on the road, heavy traffic
conditions and occlusions among the vehicles.
The simulations were done with the same number

of 65,000 measurements under the prevailing circum-
stances. Since the sensors have the same performance
in the case of optimal conditions (see paragraph 5.1),
yielding the best fusion results, it is necessary to inves-
tigate the fusion process for the cases 1.a) till 3.c). Case
0.) is used only for reference. We used the probability
wheel, according to equation (6), for the estimation of
the optimal state x, since highly influenced traffic sensor
data are merged reflecting the expected higher degree of
uncertainty of the data.
The tables I to VII show the achieved estimation

errors of the vehicle classes with naive BDF (row BDF)
according to equation (3) in comparison to the extended
BNDF (row BNDF), which considers the the nodes T,
O and R, according to equation (4) and Fig. 6.
We considered two kinds of estimation errors for the

evaluation of the comparison between BNDF and BDF.
The relative Class Related Error CRE(x) of vehicle class
x is given by:

CRE(x) =
FDV(x)

CDV(x) +FDV(x)
8 x 2 X,

with CDV(x) denoting the number of correctly detected
vehicles of class x and FDV(x) denoting the number of
false detected vehicles of class x. The calculation of the
CREs of the vehicle class of interest informs us about
the accuracy of the fusion process in a class related
context. Since some vehicle classes can be detected
more or less better than other, the CREs differ. The
accumulation of FDV(x), 8x 2 X, in relation to the sum
of all detected vehicles, yields the Total Classification
Error (TCE):

TCE =

X
x2X

FDV(x)X
x2X
(CDV(x) +FDV(x))

(7)

which allows us to state something about how accurate
and successful the fusion process is overall. Although
the TCE can be decreased by far, it might happen, that
there are vehicle classes, whose CREs increase by far
or which cannot be determined anymore, i.e. their CREs
reach 100%. Depending on the fusion task to be solved
and the underlying operational areas of the applied
sensors, the fusion process can be successful if the TCE
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decreases and some CREs increase. For instance, this
might be the case for an average estimation of the travel
times for traffic management. On the other hand, the
fusion process can be unsuccessful, if there is at least
one CRE increasing or reaching even 100%, e.g. in the
case of enforcement at tollgates on motorways. Because
of these facts, the two terms CRE-successful fusion
and TCE-successful fusion are introduced to distinguish
between the two error metrics above.
The relative discrepancies between the TCEs and the

CREs in the case of BNDF and in the case of the naive
BDF are given by ¢TCE and ¢CRE respectively.
In the following, the simulation results of the con-

sidered cases are given and interpreted. It is shown, that
modelling the affecting conditions as additional nodes
in a BN usually, but not generally, yield improvements
of the vehicle class estimates. Although the TCEs de-
crease in any cases in BNDF, the CREs of some vehicle
classes may increase.
1) None Affected Sensors–Case 0.): As mentioned

above, if both sensors work optimally, i.e. there is no af-
fecting influence set E, optimal results for vehicle clas-
sification are obtained. In this case the results for BDF
and BNDF are identical. 807 of 65,000 vehicle class
estimates are erroneous (TCE = 1:24%). The CREs for
each vehicle classes are the following: CRE(C) = 0:5%,
CRE(C+) = 19:0%, CRE(V) = 2:6%, CRE(L) = 3:9%,
CRE(L+) = 18:0%, CRE(D) = 5:3%, CRE(B) = 20:3%,
CRE(M) = 18:3% and CRE(N) = 29:2%. These results
are used for reference.
2) Affected Video Detector–Cases 1.a) to 1.c): As

expected, if there is only one sensor affected by some
influence set E, the vehicle classification with BNDF
yields much better results, than by BDF, which had al-
ready been stated in the underlying paper [9]. Here, the
TCEs decrease from 8.7% (5,644 erroneous vehicles),
10.0% (6,517) and 10.9% (7,097) to 5.0% (3,241), 3.7%
(2,430) and 4.2% (2,751) for the cases 1.a), 1.b) and
1.c) respectively. See the tables I, II and III for more
results. In almost any case the CREs decrease by far, up
to ¢CRE(M) =¡88% in case 1.b), whereas there is ex-
actly one significant increase of the CRE of vehicle class
L in the case 1.c). Since the class C ist strongly overrep-
resented by the prior probability P(x= C) = 85%, it is
not surprising, that there can be achieved an enormous
error reduction for this vehicle class up to ¢CRE(C) =
¡79% in case 1.c) as well. There are also some other
cases, where the vehicle classes C+ and N cannot be de-
tected at all, i.e. their CREs reached 100%. Furthermore,
if the classification results achieved here are compared
with the unaffected reference case 0., it can be ascer-
tained, that there is an reduction of the CREs of the class
M from 29.2% to 11.8%, i.e. we could even improve the
unaffected fusion results by far. Considering the three
cases, we can speak of a TCE-successful fusion and an
almost totally CRE-succesful fusion for vehicle classifi-
cation, if the sensor properties, affected by the modelled
conditions are considered in the BNDF model. As a

consequence, we are able to improve the measurements
of environmental influenced sensors, whose properties
and dependencies are modelled in a particular BN, by
environmental independent sensors.
3) Affected Loop Detector–Case 2.): If the video

detector works optimally and the loop detector is af-
fected by the traffic state, i.e. the influence set is e=
ft2g, the simulation results of the cases 1.a) to 1.c) are
mostly verified. Altogether, there is a reduction of the
TCE from 3.5% (2,298 erroneous vehicles) to 3.1%
(1,989). See table IV for results. The CRE for class
L+ is decreased by far: ¢CRE(L+) =¡62%. But there
are also increases of the CREs for the vehicle classes
V, L and N. As a result, vehicle class N cannot be cor-
rectly classified anymore. The fusion results can be said
to be TCE-succesful and almost CRE-successful. Com-
pletely CRE-unsuccessful are the CREs for the classes L
and N.
4) Both Sensors Affected–Cases 3.a) to 3.c): If

both sensors are affected by some influence set E, we
have the worst conditions for detecting and classify-
ing vehicles on the road. Here, the TCEs decrease from
17.4%, 27.1% and 26.3% to 10.2%, 8.8% and 9.5% in
the cases 3.a), 3.b) and 3.c) respectively. That means the
TCEs reduce by 41%, 67% and 64%, resprectively. See
table V, VI and VII for results. The overall results show
incredible improvements, due to the consideration of the
sensors’ dependencies in the BNDF model, but there are
also weightily drawbacks in accordance with the CREs
of some vehicle classes. Since class C is strongly over-
represented by the prior probabiliy P(x), the superpo-
sition of the influences make the correct classification
of C much easier, thus the CREs of class C in BNDF
are very low. In contrast, the CREs of other vehicle
classes increase and some reach 100%. Noticable is for
instance the increase of the CRE(L) by 184% and 44%
in the cases 3.b) and 3.c) respectively.
If the fusion in these cases is evaluated, we can state,

that we have very TCE-successful fusion, but CRE-
unsuccessful fusion in almost any case and for almost
each vehicle class, which is usually unacceptable. Due
to the fact, that BDF also behaves poorly, we cannot
even speak of good fusion results in general. Under
such difficult circumstances and again, depending on
the fusion task to solve in accordance with the underly-
ing traffic related problem, one should think about the
reduction of the nine vehicle classes to maybe two, for
instance combining car similar vehicles to the first class
and lorry similar vehicle to the second class.
5) Summary of the Results in the Tables I to VII:

Summarising the seven tables, we can state, that usu-
ally BDF performs poorly, because of the inherent se-
lection bias, yielding the addressed over- and under-
counting of specified vehicle classes. In contrast, in the
case of BNDF, the consideration of the sensors’ sur-
rounding environment and other phenomena like traf-
fic process related dependencies, affecting the sensors’
performance, in the fusion model, yielded an explicit
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TABLE I

CREs for Vehicle Classification in the Case 1.a) [%]

C C+ V L L+ D B M N

BDF 3.8 94.0 26.1 25.4 86.3 39.7 88.1 99.5 98.9
BNDF 2.7 100 9.0 17.3 46.6 26.1 42.7 17.9 100
¢CRE ¡27 +6 ¡66 ¡32 ¡46 ¡34 ¡52 ¡82 +1

¢TCE By consideration of e= fo2g in BNDF: ¡42:6%

TABLE II

CREs for Vehicle Classification in the Case 1.b) [%]

C C+ V L L+ D B M N

BDF 8.6 98.3 7.9 8.3 63.4 14.1 66.9 95.8 92.4
BNDF 2.5 19.2 7.3 8.6 20.1 15.9 53.5 11.8 38.0
¢CRE ¡71 ¡81 ¡8 +4 ¡68 +12 ¡20 ¡88 ¡59
¢TCE By Consideration of e= fr2g in BNDF: ¡62:7%

TABLE III

CREs for Vehicle Classification in the Case 1.c) [%]

C C+ V L L+ D B M N

BDF 7.9 99.6 16.1 21.9 72.6 26.8 80.8 96.2 94.2
BNDF 1.7 37.1 8.5 35.2 34.5 32.2 32.0 35.9 100
¢CRE ¡79 ¡63 ¡48 +61 ¡52 ¡14 ¡60 ¡634 +6

¢TCE By Consideration of e= fo2,r2g in BNDF: ¡61:2%

TABLE IV

CREs for Vehicle Classification in the Case 2.) [%]

C C+ V L L+ D B M N

BDF 1.6 71.3 5.9 8.6 79.2 28.0 36.2 30.7 88.6
BNDF 1.2 71.3 6.6 11.2 29.4 22.2 36.2 30.7 100
¢CRE ¡25 §0 +13 +31 ¡62 ¡21 §0 §0 +13

¢TCE By Consideration of e= ft2g in BNDF: ¡13:4%

TCE-successful fusion for any considered case. See
Fig. 7 for the results. The best results were obtained,
if the worst conditions were considered in the fusion
model. In the case of two sensors, one traffic process
dependent loop detector and one weather and traffic
process affected video sensor, we achieved an improve-
ment of the fusion process by more than 60%. Conse-
quently, we are able to enhance environmental indepen-
dent sensors by strongly environmental dependent sen-
sors, whose properties and dependencies are modelled
in a particular BN. That means since there is no single
sensor, which is environmentally independent, the sen-
sors should be affected in different ways and/or different
domains.

On the other hand, the results show, that BNDF (and
also BDF) is not CRE-successful in any case, particu-

TABLE V

CREs for Vehicle Classification in the Case 3.a) [%]

C C+ V L L+ D B M N

BDF 9.9 97.6 38.6 37.6 95.9 74.8 90.1 100 100
BNDF 2.8 100 36.4 44.3 100 100 100 100 100
¢CRE ¡76 +2 ¡6 +18 +4 +34 +11 §0 §0
¢TCE By Consideration of e= ft2,o2g in BNDF: ¡41:1%

TABLE VI

CREs for Vehicle Classification in the Case 3.b) [%]

C C+ V L L+ D B M N

BDF 26.0 99.6 22.5 18.7 90.6 57.0 65.8 96.8 100
BNDF 3.9 73.7 21.8 53.1 100 46.2 65.8 59.3 100
¢CRE ¡85 ¡26 ¡3 +184 +10 ¡19 §0 ¡39 §0
¢TCE By Consideration of e= ft2,r2g in BNDF: ¡67:4%

TABLE VII

CREs for Vehicle Classification in the Case 3.c) [%]

C C+ V L L+ D B M N

BDF 23.5 99.6 29.0 31.9 92.8 64.3 84.8 98.5 98.0
BNDF 3.3 100 31.3 45.9 100 66.3 84.8 47.8 100
¢CRE ¡86 +0:4 +8 +44 +8 +3 §0 ¡52 +2

¢TCE By Consideration of e= ft2,o2,r2g in BNDF: ¡63:8%

Fig. 7. The TCEs of the cases 0.) (for reference) to 3.c) are plotted
for BDF and BNDF. The most improvements occur in 3.a) to 3.c).

larly if the conditions for both sensors are bad. Depend-
ing on the fusion task to be solved and the underlying
task in traffic management, it must be decided, whether
the fusion results are beneficial or not. If necessary, the
classification domain for vehicles must be reduced to
two classes for instance.
The results show, what magnitude of improvements

in data fusion can be achieved, if external and inter-

58 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 3, NO. 1 JUNE 2008



nal affects are considered in the fusion model. Nev-
ertheless, the obtained error reductions of the vehicle
class estimates must be interpreted in a correct man-
ner, because the simulations were done on the basis
of synthetic data (which was supplemented with real
24-hour traffic data). When using real traffic data, the
fusion error reduction results are supposed to be slightly
worse.
6) Computational Performance: The computation

and evaluation of the simple BN in Fig. 6 can be done
in real-time, since it is small and consists of mainly bi-
nary evidence nodes. However, if one wishes to consider
more external and internal influences, which are char-
acterised by more states, affecting the performance of
the sensors, the computational complexity grows expo-
nentially. Consequently, the use of larger, more realistic
BN for data fusion in traffic surveillance, has to be in-
vestigated with regard to the accuracy and reliability of
the traffic data, real-time applicability, etc.

6. CONCLUSIONS AND FUTURE PROSPECTS

In this paper a data fusion method was introduced,
that is based on the concept of Bayesian Networks,
called Bayesian Network Data Fusion (BNDF). Since
sensors are time variant systems with particular func-
tional principles, the measurements are as good as the
a priori knowledge about the sensors and the underlying
process are and as good as the measurements of the sen-
sors are. The sensors are affected by the external, e.g.
environmental conditions, and internal conditions, e.g.
the physical life of the sensor, yielding selection bias
in the resulting measuring data. Thus, the consideration
of these dependencies in a BN model are indispensable
to correct selection bias and thus, improve the fusion
process and the resulting data.
The obtained results for vehicle classification show,

that the BNDF model is able to infer vehicle classes
by systematically taking into account sensor measure-
ments (the vehicle evidences), environmental conditions
(the environmental evidences) and traffic process related
conditions (traffic state evidences and occlusions). By
the combination of two heterogeneous sensors–here, a
weather and traffic process dependent video sensor and
a traffic process dependent inductive loop detector–
the accuracy of the estimates of the vehicle classes is
improved by up to more than 60%, i.e. the fusion pro-
cess is TCE-successful in any case. The fusion results
are also CRE-successful, if it can be ensured, that the
sensors are affected by some differing influence sets.
Under certain difficult circumstances, the fusion pro-
cess is usually not CRE-successful, which means, the
CREs increase by far or reach even 100%, i.e. the ve-
hicles cannot be classified correctly at all. As a con-
sequence, the applied sensors should differ in their in-
ternal and external influences. Furthermore, the sensors

must be used carefully. Depending on the fusion task
to be solved and the underlying traffic related applica-
tion, one must decide, whether a not CRE-successful
fusion is sufficently satisfied. The decisions of a traf-
fic manager will differ in the case of simply measuring
averaged travel times and in the case of the classifac-
tion of vehicles for enforcment and monetary applica-
tions.
The obtained results must be interpreted carefully,

because the simulations were done on the basis of syn-
thetic traffic data, supplemented with real traffic data.
Moreover, the conditions for an optimal performance
of the video sensor were intentionally violated by the
modelled bad conditions. Vice versa, if the conditions
are optimal, the fusion results will be even better. The
investigation of a two homogeneous sensor fusion was
not of interest in this article. Since, homogeneous de-
tectors are affected by the same internal and external
conditions, selection bias cannot be corrected in general.
Nevertheless, an improvement of the fusion process is
obvious.
The results further show, what magnitude of im-

provements in data fusion can be achieved, if external
and internal affects are considered in the fusion model.
But, in case of real traffic data, the fusion results are
supposably slightly worse.
Our current work is characterised by the applica-

tion of the proposed method (using probability wheel
and MAP estimation) to real traffic data. Thereby not
only video sensors and their dependencies on weather
conditions, but also other sensors, e.g. inductive loop
detectors, infrared sensors, etc. and their influences by
external and internal conditions need to be investigated
and quantified in a BNDF model, because the con-
cept of BNDF is not restricted to any particular sen-
sor type, but generally valid. Thus, the creation and
application of an adequate BN sensor model is sup-
posed to improve the fusion results and to correct se-
lection bias in general. In this regard it has to be
stated, that the simulations done and the results achieved
cannot be extrapolated, since they refer only on two
specific sensors, with certain properties and applica-
tions.
Furthermore, the concept of adaptive probability

learning is to be applied to the considered probabilistic
sensor model to investigate the considered results for
an instationary traffic process with time dependent prior
probabilities [10]. This comes along with the coupling
of the environmental nodes, e.g. the weather node, with
meteorological models to achieve more sophisticated
cases.

APPENDIX

In the following the prior probability and the CPTs
of the simulated inductive loop detector Z1 and the video
sensor Z2 are given.
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Prior Probability

P(x) = (:847 :004 :094 :026 :005 :012 :005 :006 :001)T

(8)
CPTs of the Inductive Loop Detector Z1

P(z1 j x, t1)

=

0BBBBBBBBBBBB@

:91 :01 :01 :01 :01 :01 :01 :01 :01 :01
:01 :91 :01 :01 :01 :01 :01 :01 :01 :01
:01 :01 :91 :01 :01 :01 :01 :01 :01 :01
:01 :01 :01 :91 :01 :01 :01 :01 :01 :01
:01 :01 :01 :01 :91 :01 :01 :01 :01 :01
:01 :01 :01 :01 :01 :91 :01 :01 :01 :01
:01 :01 :01 :01 :01 :01 :91 :01 :01 :01
:01 :01 :01 :01 :01 :01 :01 :91 :01 :01
:01 :01 :01 :01 :01 :01 :01 :01 :91 :01

1CCCCCCCCCCCCA
(9)

P(z1 j x, t2)

=

0BBBBBBBBBBBB@

:73 :03 :03 :03 :03 :03 :03 :03 :03 :03
:18 :36 :18 :04 :04 :04 :04 :04 :04 :04
:03 :03 :73 :03 :03 :03 :03 :03 :03 :03
:03 :03 :03 :73 :03 :03 :03 :03 :03 :03
:04 :05 :05 :13 :27 :27 :13 :02 :03 :01
:04 :05 :05 :13 :27 :27 :13 :02 :03 :01
:03 :03 :03 :03 :03 :03 :73 :03 :03 :03
:10 :01 :03 :03 :01 :01 :03 :73 :03 :02
:11 :11 :11 :11 :11 :11 :11 :11 :11 :01

1CCCCCCCCCCCCA
:

(10)

CPTs of the Video Sensor Z2

P(z2 j x,o1,r1)

=

0BBBBBBBBBBBB@

:91 :01 :01 :01 :01 :01 :01 :01 :01 :01
:01 :91 :01 :01 :01 :01 :01 :01 :01 :01
:01 :01 :91 :01 :01 :01 :01 :01 :01 :01
:01 :01 :01 :91 :01 :01 :01 :01 :01 :01
:01 :01 :01 :01 :91 :01 :01 :01 :01 :01
:01 :01 :01 :01 :01 :91 :01 :01 :01 :01
:01 :01 :01 :01 :01 :01 :91 :01 :01 :01
:01 :01 :01 :01 :01 :01 :01 :91 :01 :01
:01 :01 :01 :01 :01 :01 :01 :01 :91 :01

1CCCCCCCCCCCCA
(11)

P(z2 j x,o2,r1)

=

0BBBBBBBBBBBB@

:20 :06 :06 :06 :05 :05 :06 :20 :06 :20
:20 :05 :05 :10 :05 :05 :05 :20 :05 :20
:20 :05 :10 :10 :10 :07 :10 :07 :14 :07
:10 :05 :10 :15 :125 :125 :15 :05 :10 :05
:10 :05 :10 :15 :15 :15 :15 :05 :05 :05
:10 :05 :10 :15 :15 :15 :15 :05 :05 :05
:10 :05 :15 :15 :10 :10 :15 :05 :10 :05
:01 :01 :01 :01 :01 :01 :01 :01 :01 :91
:12 :12 :12 :12 :12 :12 :12 :12 :02 :02

1CCCCCCCCCCCCA
(12)

P(z2 j x,o1,r2)

=

0BBBBBBBBBBBBBBBB@

:01 :01 :01 :91 :01 :01 :01 :01 :01 :01

:01 :01 :01 :07 :40 :40 :07 :01 :01 :01

:01 :01 :22 :70 :01 :01 :01 :01 :01 :01

:01 :01 :01 :40 :07 :07 :40 :01 :01 :01

:01 :01 :01 :07 :40 :40 :07 :01 :01 :01

:01 :01 :01 :07 :40 :40 :07 :01 :01 :01

:01 :01 :01 :40 :07 :07 :40 :01 :01 :01

:55 :05 :05 :05 :05 :05 :05 :05 :05 :05

:10 :10 :10 :10 :10 :10 :10 :10 :10 :10

1CCCCCCCCCCCCCCCCA
(13)

P(z2 j x,o2,r2)

=

0BBBBBBBBBBBBBBBB@

:03 :03 :03 :73 :03 :03 :03 :03 :03 :03

:15 :01 :03 :07 :30 :30 :07 :05 :01 :01

:10 :01 :18 :65 :01 :01 :01 :01 :01 :01

:08 :01 :07 :25 :19 :17 :20 :01 :01 :01

:05 :03 :05 :12 :30 :30 :12 :01 :01 :01

:05 :03 :05 :12 :30 :30 :12 :01 :01 :01

:08 :01 :07 :20 :19 :17 :25 :01 :01 :01

:03 :03 :03 :03 :03 :03 :03 :03 :03 :73

:10 :10 :10 :10 :10 :10 :10 :10 :10 :10

1CCCCCCCCCCCCCCCCA
:

(14)
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[2] S.-C. Cheung and C. Kamath
Robust techniques for background subtraction in urban
traffic video.
In Video Communications and Image Processing, SPIE Elec-
tronic Imaging, 2004.

[3] I. Cohen, A. Bronstein and F. G. Cozman
Adaptive online learning of bayesian network parameters.
http://www.hpl.hp.com/techreports/2001/HPL-2001-156.
html, 2001.

[4] R. G. Cowell, A. P. Dawid, S. L. Lauritzen and D. J. Spiegel-
halter
Probabilistic Networks and Expert Systems.
New York: Springer, 1999.

[5] S. Ferrari and A. Vaghi
Demining sensor modeling and feature-level fusion by
Bayesian networks.
IEEE Sensors Journal, 6, 2 (Apr. 2006), 471—483.

[6] J. Grenard, D. Bullock and A. P. Tarko
Evaluation of selected video detection systems at signalized
intersections.
Final Report, FHWA/IN/JTRP-2001/22 (West Lafayette.
IN: Indiana Department of Transportation, Division of Re-
search, and Purdue University, Nov. 2001).

[7] D. L. Hall
Mathematical Techniques in Multisensor Data Fusion.
Massachusetts: Artech House, 1992.

[8] D. Heckerman
A tutorial on learning with Bayesian networks.
Technical Report MSR-TR-95-06, Redmond, 1995.

60 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 3, NO. 1 JUNE 2008



[9] M. Junghans and H.-J. Jentschel
Qualification of traffic data by bayesian network data fu-
sion.
In Proceedings of the 10th International Conference on In-
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